caffenet¶
Use Case and High-Level Description¶
CaffeNet* model is used for classification. For details see paper.
Specification¶
Metric |
Value |
---|---|
Type |
Classification |
GFlops |
1.463 |
MParams |
60.965 |
Source framework |
Caffe* |
Accuracy¶
Metric |
Value |
---|---|
Top 1 |
56.714% |
Top 5 |
79.916% |
Input¶
Original Model¶
Image, name: data
, shape: 1, 3, 227, 227
, format: B, C, H, W
, where:
B
- batch sizeC
- number of channelsH
- image heightW
- image width
Expected color order: BGR
.
Mean values: [104.0, 117.0, 123.0].
Converted Model¶
Image, name: data
, shape: 1, 3, 227, 227
, format: B, C, H, W
, where:
B
- batch sizeC
- number of channelsH
- image heightW
- image width
Expected color order: BGR
.
Output¶
Original Model¶
Object classifier according to ImageNet classes, name: prob
, shape: 1, 1000
. Contains predicted
probability for each class.
Converted model¶
Object classifier according to ImageNet classes, name: prob
, shape: 1, 1000
. Contains predicted
probability for each class.
Download a Model and Convert it into OpenVINO™ IR Format¶
You can download models and if necessary convert them into OpenVINO™ IR format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
omz_downloader --name <model_name>
An example of using the Model Converter:
omz_converter --name <model_name>
Demo usage¶
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities: