Deblur Photos with DeblurGAN-v2 and OpenVINO™¶
This tutorial is also available as a Jupyter notebook that can be cloned directly from GitHub. See the installation guide for instructions to run this tutorial locally on Windows, Linux or macOS. To run without installing anything, click the launch binder button.
This tutorial demonstrates Single Image Motion Deblurring with DeblurGAN-v2 in OpenVINO, by first converting the VITA-Group/DeblurGANv2 model to OpenVINO Intermediate Representation (OpenVINO IR) format. For more information about the model, see the documentation.
What is deblurring?¶
Deblurring is the task of removing motion blurs that usually occur in photos shot with hand-held cameras when there are moving objects in the scene. Blurs not only reduce the human perception about the quality of the image, but also complicate computer vision analyses.
For more information, refer to the following research paper:
Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 8878-8887).
Preparations¶
Imports¶
import sys
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import Markdown, display
from openvino.runtime import Core
sys.path.append("../utils")
from notebook_utils import load_image
Settings¶
# A device to use for inference. For example, "CPU", or "GPU".
DEVICE = "CPU"
# A directory where the model will be downloaded.
model_dir = Path("model")
model_dir.mkdir(exist_ok=True)
# The name of the model from Open Model Zoo.
model_name = "deblurgan-v2"
model_xml_path = model_dir / f"{model_name}.xml"
ov_model = None
precision = "FP16"
Download DeblurGAN-v2 Model¶
Model defined in
VITA-Group/DeblurGANv2
repository. For converting model we should clone this repo and install
its dependencies. To reduce conversion step, we will use OMZ downloader
for downloading model weights. After downloading is finished, model
related code will be saved in model/public/deblurgan-v2/models/
directory and weights in public/deblurgan-v2/ckpt/fpn_mobilenet.h5
download_command = (
f"omz_downloader --name {model_name} --output_dir"
f" {model_dir} --cache_dir {model_dir}"
)
display(Markdown(f"Download command: `{download_command}`"))
display(Markdown(f"Downloading {model_name}..."))
! $download_command
Download command:
omz_downloader --name deblurgan-v2 --output_dir model --cache_dir model
Downloading deblurgan-v2…
################|| Downloading deblurgan-v2 ||################
========== Downloading model/public/deblurgan-v2/models/__init__.py
========== Downloading model/public/deblurgan-v2/models/fpn_mobilenet.py
========== Downloading model/public/deblurgan-v2/models/mobilenet_v2.py
========== Downloading model/public/deblurgan-v2/models/networks.py
========== Downloading model/public/deblurgan-v2/ckpt/fpn_mobilenet.h5
========== Replacing text in model/public/deblurgan-v2/models/networks.py
========== Replacing text in model/public/deblurgan-v2/models/fpn_mobilenet.py
========== Replacing text in model/public/deblurgan-v2/models/fpn_mobilenet.py
Prepare model¶
DeblurGAN-v2 is PyTorch model for converting it to OpenVINO Intermediate Representation format, we should first instantiate model class and load checkpoint weights.
sys.path.append("model/public/deblurgan-v2")
import torch
from models.networks import get_generator
class DeblurV2(torch.nn.Module):
def __init__(self, weights, model_name):
super().__init__()
parameters = {'g_name': model_name, 'norm_layer': 'instance'}
self.impl = get_generator(parameters)
checkpoint = torch.load(weights, map_location='cpu')['model']
self.impl.load_state_dict(checkpoint)
self.impl.train(True)
def forward(self, image):
out = self.impl(image)
# convert out to [0, 1] range
out = (out + 1) / 2
return out
Convert DeblurGAN-v2 Model to OpenVINO IR format¶
For best results with OpenVINO, it is recommended to convert the model
to OpenVINO IR format. OpenVINO supports PyTorch via ONNX conversion. We
will use torch.onnx.export
for exporting the ONNX model from
PyTorch. We need to provide initialized model object and example of
inputs for shape inference. More information about torch.onnx.export
provided in PyTorch
documentation.
Then, we will use Model Optimizer Python API functionality to convert
the ONNX model. The mo.convert_model
Python function returns an
OpenVINO model ready to load on device and start making predictions. We
can save it on disk for next usage with openvino.runtime.serialize
.
For more information about Model Optimizer Python API, see the Model
Optimizer Developer
Guide.
Model Conversion may take a while.
from openvino.tools import mo
from openvino.runtime import serialize
deblur_gan_model = DeblurV2("model/public/deblurgan-v2/ckpt/fpn_mobilenet.h5", "fpn_mobilenet")
with torch.no_grad():
deblur_gan_model.eval()
torch.onnx.export(deblur_gan_model, torch.zeros((1,3,736,1312)), model_xml_path.with_suffix('.onnx'))
ov_model = mo.convert_model(model_xml_path.with_suffix('.onnx'), compress_to_fp16=(precision == "FP16"))
serialize(ov_model, str(model_xml_path))
/opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/onnx/_internal/jit_utils.py:258: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
_C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
/opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/onnx/utils.py:687: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
_C._jit_pass_onnx_graph_shape_type_inference(
/opt/home/k8sworker/cibuilds/ov-notebook/OVNotebookOps-408/.workspace/scm/ov-notebook/.venv/lib/python3.8/site-packages/torch/onnx/utils.py:1178: UserWarning: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function. (Triggered internally at ../torch/csrc/jit/passes/onnx/shape_type_inference.cpp:1884.)
_C._jit_pass_onnx_graph_shape_type_inference(
Load the Model¶
Load and compile the DeblurGAN-v2 model in the OpenVINO Runtime with
ie.read_model
and compile it for the specified device with
ie.compile_model
. Get input and output keys and the expected input
shape for the model.
ie = Core()
model = ie.read_model(model=model_xml_path)
compiled_model = ie.compile_model(model=model, device_name=DEVICE)
model_input_layer = compiled_model.input(0)
model_output_layer = compiled_model.output(0)
model_input_layer
<ConstOutput: names[input.1] shape[1,3,736,1312] type: f32>
model_output_layer
<ConstOutput: names[769] shape[1,3,736,1312] type: f32>
Deblur Image¶
Load, resize and reshape input image¶
The input image is read by using the default load_image
function
from notebooks.utils
. Then, resized to meet the network expected
input sizes, and reshaped to (N, C, H, W)
, where N
is a number
of images in the batch, C
is a number of channels, H
is the
height, and W
is the width.
# Image filename (local path or URL)
filename = "https://raw.githubusercontent.com/VITA-Group/DeblurGANv2/master/test_img/000027.png"
# Load the input image.
# Load image returns image in BGR format
image = load_image(filename)
# Convert the image to expected by model RGB format
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# N,C,H,W = batch size, number of channels, height, width.
N, C, H, W = model_input_layer.shape
# Resize the image to meet network expected input sizes.
resized_image = cv2.resize(image, (W, H))
# Convert image to float32 precision anf normalize in [-1, 1] range
input_image = (resized_image.astype(np.float32) - 127.5) / 127.5
# Add batch dimension to input image tensor
input_image = np.expand_dims(input_image.transpose(2, 0, 1), 0)
plt.imshow(image);
Do Inference on the Input Image¶
Do the inference, convert the result to an image shape and resize it to the original image size.
# Inference.
result = compiled_model([input_image])[model_output_layer]
# Convert the result to an image shape and [0, 255] range
result_image = result[0].transpose((1, 2, 0)) * 255
h, w = image.shape[:2]
# Resize to the original image size and convert to original u8 precision
resized_result_image = cv2.resize(result_image, (w, h)).astype(np.uint8)
plt.imshow(resized_result_image);
Display results¶
# Create subplot(r,c) by providing the no. of rows (r),
# number of columns (c) and figure size.
f, ax = plt.subplots(1, 2, figsize=(20, 20))
# Use the created array and display the images horizontally.
ax[0].set_title("Blurred")
ax[0].imshow(image)
ax[1].set_title("DeblurGAN-v2")
ax[1].imshow(resized_result_image);
Save the deblurred image¶
Save the output image of the DeblurGAN-v2 model in the current directory.
savename = "deblurred.png"
cv2.imwrite(savename, resized_result_image);