Functions | |
| Node | batch_norm_inference (NodeInput data, NodeInput gamma, NodeInput beta, NodeInput mean, NodeInput variance, float epsilon, Optional[str] name=None) |
| Perform layer normalizes a input tensor by mean and variance with appling scale and offset. More... | |
| Node | gather_nd (NodeInput data, NodeInput indices, Optional[int] batch_dims=0, Optional[str] name=None) |
| Return a node which performs GatherND. More... | |
| Node | log_softmax (NodeInput data, int axis, Optional[str] name=None) |
| Apply LogSoftmax operation on each element of input tensor. More... | |
| Node | non_max_suppression (NodeInput boxes, NodeInput scores, Optional[NodeInput] max_output_boxes_per_class=None, Optional[NodeInput] iou_threshold=None, Optional[NodeInput] score_threshold=None, Optional[NodeInput] soft_nms_sigma=None, str box_encoding="corner", bool sort_result_descending=True, str output_type="i64", Optional[str] name=None) |
| Return a node which performs NonMaxSuppression. More... | |
| Node | round (NodeInput data, str mode="half_to_even", Optional[str] name=None) |
| Apply Round operation on each element of input tensor. More... | |
| Node | lstm_sequence (NodeInput X, NodeInput initial_hidden_state, NodeInput initial_cell_state, NodeInput sequence_lengths, NodeInput W, NodeInput R, NodeInput B, int hidden_size, str direction, List[str] activations=None, List[float] activations_alpha=None, List[float] activations_beta=None, float clip=0.0, Optional[str] name=None) |
| Return a node which performs LSTMSequence operation. More... | |
| Node | hsigmoid (NodeInput data, Optional[str] name=None) |
| Return a node which performs HSigmoid. More... | |
| Node | gru_sequence (NodeInput X, NodeInput initial_hidden_state, NodeInput sequence_lengths, NodeInput W, NodeInput R, NodeInput B, int hidden_size, str direction, List[str] activations=None, List[float] activations_alpha=None, List[float] activations_beta=None, float clip=0.0, bool linear_before_reset=False, Optional[str] name=None) |
| Return a node which performs GRUSequence operation. More... | |
| Node | rnn_sequence (NodeInput X, NodeInput initial_hidden_state, NodeInput sequence_lengths, NodeInput W, NodeInput R, NodeInput B, int hidden_size, str direction, List[str] activations=None, List[float] activations_alpha=None, List[float] activations_beta=None, float clip=0.0, Optional[str] name=None) |
| Return a node which performs RNNSequence operation. More... | |
| Node | loop (NodeInput trip_count, NodeInput execution_condition, List[Node] inputs, GraphBody graph_body, List[TensorIteratorSliceInputDesc] slice_input_desc, List[TensorIteratorMergedInputDesc] merged_input_desc, List[TensorIteratorInvariantInputDesc] invariant_input_desc, List[TensorIteratorBodyOutputDesc] body_output_desc, List[TensorIteratorConcatOutputDesc] concat_output_desc, int body_condition_output_idx, int current_iteration_input_idx=-1, Optional[str] name=None) |
| Perform recurrent execution of the network described in the body, iterating through the data. More... | |
| Node ngraph.opset5.ops.batch_norm_inference | ( | NodeInput | data, |
| NodeInput | gamma, | ||
| NodeInput | beta, | ||
| NodeInput | mean, | ||
| NodeInput | variance, | ||
| float | epsilon, | ||
| Optional[str] | name = None |
||
| ) |
Perform layer normalizes a input tensor by mean and variance with appling scale and offset.
@param data: The input tensor with data for normalization.
@param gamma: The scalar scaling for normalized value.
@param beta: The bias added to the scaled normalized value.
@param mean: The value for mean normalization.
@param variance: The value for variance normalization.
@param epsilon: The number to be added to the variance to avoid division
by zero when normalizing a value.
@param name: The optional name of the output node.
@return: The new node which performs BatchNormInference.
| Node ngraph.opset5.ops.gather_nd | ( | NodeInput | data, |
| NodeInput | indices, | ||
| Optional[int] | batch_dims = 0, |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs GatherND.
@param data: N-D tensor with data for gathering @param indices: K-D tensor of tuples with indices by which data is gathered @param batch_dims: Scalar value of batch dimensions @return: The new node which performs GatherND
| Node ngraph.opset5.ops.gru_sequence | ( | NodeInput | X, |
| NodeInput | initial_hidden_state, | ||
| NodeInput | sequence_lengths, | ||
| NodeInput | W, | ||
| NodeInput | R, | ||
| NodeInput | B, | ||
| int | hidden_size, | ||
| str | direction, | ||
| List[str] | activations = None, |
||
| List[float] | activations_alpha = None, |
||
| List[float] | activations_beta = None, |
||
| float | clip = 0.0, |
||
| bool | linear_before_reset = False, |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs GRUSequence operation.
@param X: The input tensor. Shape: [batch_size, seq_length, input_size].
@param initial_hidden_state: The hidden state tensor.
Shape: [batch_size, num_directions, hidden_size].
@param sequence_lengths: Specifies real sequence lengths for each batch element.
Shape: [batch_size]. Integer type.
@param W: Tensor with weights for matrix multiplication operation with input portion of data.
Shape: [num_directions, 3*hidden_size, input_size].
@param R: The tensor with weights for matrix multiplication operation with hidden state.
Shape: [num_directions, 3*hidden_size, hidden_size].
@param B: The sum of biases (weight and recurrence).
For linear_before_reset set True the shape is [num_directions, 4*hidden_size].
Otherwise the shape is [num_directions, 3*hidden_size].
@param hidden_size: Specifies hidden state size.
@param direction: Specifies if the RNN is forward, reverse, or bidirectional.
@param activations: The list of three activation functions for gates.
@param activations_alpha: The list of alpha parameters for activation functions.
@param activations_beta: The list of beta parameters for activation functions.
@param clip: Specifies bound values [-C, C] for tensor clipping performed before activations.
@param linear_before_reset: Flag denotes if the layer behaves according to the modification
of GRU described in the formula in the ONNX documentation.
@param name: An optional name of the output node.
@return: The new node represents GRUSequence. Node outputs count: 2.
| Node ngraph.opset5.ops.hsigmoid | ( | NodeInput | data, |
| Optional[str] | name = None |
||
| ) |
Return a node which performs HSigmoid.
@param data: Tensor with input data floating point type. @return: The new node which performs HSigmoid
| Node ngraph.opset5.ops.log_softmax | ( | NodeInput | data, |
| int | axis, | ||
| Optional[str] | name = None |
||
| ) |
Apply LogSoftmax operation on each element of input tensor.
@param data: The tensor providing input data. @param axis: An axis along which LogSoftmax should be calculated @return: The new node with LogSoftmax operation applied on each element.
| Node ngraph.opset5.ops.loop | ( | NodeInput | trip_count, |
| NodeInput | execution_condition, | ||
| List[Node] | inputs, | ||
| GraphBody | graph_body, | ||
| List[TensorIteratorSliceInputDesc] | slice_input_desc, | ||
| List[TensorIteratorMergedInputDesc] | merged_input_desc, | ||
| List[TensorIteratorInvariantInputDesc] | invariant_input_desc, | ||
| List[TensorIteratorBodyOutputDesc] | body_output_desc, | ||
| List[TensorIteratorConcatOutputDesc] | concat_output_desc, | ||
| int | body_condition_output_idx, | ||
| int | current_iteration_input_idx = -1, |
||
| Optional[str] | name = None |
||
| ) |
Perform recurrent execution of the network described in the body, iterating through the data.
@param trip_count: A scalar or 1D tensor with 1 element specifying
maximum number of iterations.
@param execution_condition: A scalar or 1D tensor with 1 element
specifying whether to execute the first iteration or not.
@param inputs: The provided to TensorIterator operator.
@param graph_body: The graph representing the body we execute.
@param slice_input_desc: The descriptors describing sliced inputs, that is nodes
representing tensors we iterate through, processing single
data slice in one iteration.
@param merged_input_desc: The descriptors describing merged inputs, that is nodes
representing variables with initial value at first iteration,
which may be changing through iterations.
@param invariant_input_desc: The descriptors describing invariant inputs, that is nodes
representing variable with persistent value through all
iterations.
@param body_output_desc: The descriptors describing body outputs from specified
iteration.
@param concat_output_desc: The descriptors describing specified output values through
all the iterations concatenated into one node.
@param body_condition_output_idx: Determines the purpose of the corresponding result in
the graph_body. This result will determine the dynamic
exit condition. If the value of this result is False,
then iterations stop.
@param current_iteration_input_idx: Determines the purpose of the corresponding parameter
in the graph_body. This parameter will be used as
an iteration counter. Optional.
@return: The new node which performs Loop.
| Node ngraph.opset5.ops.lstm_sequence | ( | NodeInput | X, |
| NodeInput | initial_hidden_state, | ||
| NodeInput | initial_cell_state, | ||
| NodeInput | sequence_lengths, | ||
| NodeInput | W, | ||
| NodeInput | R, | ||
| NodeInput | B, | ||
| int | hidden_size, | ||
| str | direction, | ||
| List[str] | activations = None, |
||
| List[float] | activations_alpha = None, |
||
| List[float] | activations_beta = None, |
||
| float | clip = 0.0, |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs LSTMSequence operation.
@param X: The input tensor. Shape: [batch_size, seq_length, input_size].
@param initial_hidden_state: The hidden state tensor.
Shape: [batch_size, num_directions, hidden_size].
@param initial_cell_state: The cell state tensor.
Shape: [batch_size, num_directions, hidden_size].
@param sequence_lengths: Specifies real sequence lengths for each batch element.
Shape: [batch_size]. Integer type.
@param W: Tensor with weights for matrix multiplication operation with input portion of data.
Expected format: fico
Shape: [num_directions, 4*hidden_size, input_size].
@param R: The tensor with weights for matrix multiplication operation with hidden state.
Expected format: fico
Shape: [num_directions, 4*hidden_size, hidden_size].
@param B: The sum of biases (weight and recurrence). Expected format: fico
Shape: [num_directions, 4*hidden_size].
@param hidden_size: Specifies hidden state size.
@param direction: Specifies if the RNN is forward, reverse, or bidirectional.
@param activations: The list of three activation functions for gates.
@param activations_alpha: The list of alpha parameters for activation functions.
@param activations_beta: The list of beta parameters for activation functions.
@param clip: Specifies bound values [-C, C] for tensor clipping performed before activations.
@param name: An optional name of the output node.
@return: The new node represents LSTMSequence. Node outputs count: 3.
| Node ngraph.opset5.ops.non_max_suppression | ( | NodeInput | boxes, |
| NodeInput | scores, | ||
| Optional[NodeInput] | max_output_boxes_per_class = None, |
||
| Optional[NodeInput] | iou_threshold = None, |
||
| Optional[NodeInput] | score_threshold = None, |
||
| Optional[NodeInput] | soft_nms_sigma = None, |
||
| str | box_encoding = "corner", |
||
| bool | sort_result_descending = True, |
||
| str | output_type = "i64", |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs NonMaxSuppression.
@param boxes: Tensor with box coordinates.
@param scores: Tensor with box scores.
@param max_output_boxes_per_class: Tensor Specifying maximum number of boxes
to be selected per class.
@param iou_threshold: Tensor specifying intersection over union threshold
@param score_threshold: Tensor specifying minimum score to consider box for the processing.
@param soft_nms_sigma: Tensor specifying the sigma parameter for Soft-NMS.
@param box_encoding: Format of boxes data encoding.
@param sort_result_descending: Flag that specifies whenever it is necessary to sort selected
boxes across batches or not.
@param output_type: Output element type.
@return: The new node which performs NonMaxSuppression
| Node ngraph.opset5.ops.rnn_sequence | ( | NodeInput | X, |
| NodeInput | initial_hidden_state, | ||
| NodeInput | sequence_lengths, | ||
| NodeInput | W, | ||
| NodeInput | R, | ||
| NodeInput | B, | ||
| int | hidden_size, | ||
| str | direction, | ||
| List[str] | activations = None, |
||
| List[float] | activations_alpha = None, |
||
| List[float] | activations_beta = None, |
||
| float | clip = 0.0, |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs RNNSequence operation.
@param X: The input tensor. Shape: [batch_size, seq_length, input_size].
@param initial_hidden_state: The hidden state tensor.
Shape: [batch_size, num_directions, hidden_size].
@param sequence_lengths: Specifies real sequence lengths for each batch element.
Shape: [batch_size]. Integer type.
@param W: Tensor with weights for matrix multiplication operation with input portion of data.
Shape: [num_directions, hidden_size, input_size].
@param R: The tensor with weights for matrix multiplication operation with hidden state.
Shape: [num_directions, hidden_size, hidden_size].
@param B: The sum of biases (weight and recurrence).
Shape: [num_directions, hidden_size].
@param hidden_size: Specifies hidden state size.
@param direction: Specifies if the RNN is forward, reverse, or bidirectional.
@param activations: The list of three activation functions for gates.
@param activations_alpha: The list of alpha parameters for activation functions.
@param activations_beta: The list of beta parameters for activation functions.
@param clip: Specifies bound values [-C, C] for tensor clipping performed before activations.
@param name: An optional name of the output node.
@return: The new node represents RNNSequence. Node outputs count: 2.
| Node ngraph.opset5.ops.round | ( | NodeInput | data, |
| str | mode = "half_to_even", |
||
| Optional[str] | name = None |
||
| ) |
Apply Round operation on each element of input tensor.
@param data: The tensor providing input data.
@param mode: Rule to round halfway cases. If set to 'half_to_even' then halfs round to the nearest even
integer or rounding in such a way that the result heads away from zero if `mode` attribute is
'half_away_from_zero`.
@param name: An optional name of the output node.
@return: The new node with Round operation applied on each element.