Functions | |
| Node | ctc_loss (NodeInput logits, NodeInput logit_length, NodeInput labels, NodeInput label_length, Optional[NodeInput] blank_index=None, bool preprocess_collapse_repeated=False, bool ctc_merge_repeated=True, bool unique=False, Optional[str] name=None) |
| Return a node which performs CTCLoss. More... | |
| Node | non_max_suppression (NodeInput boxes, NodeInput scores, Optional[NodeInput] max_output_boxes_per_class=None, Optional[NodeInput] iou_threshold=None, Optional[NodeInput] score_threshold=None, str box_encoding="corner", bool sort_result_descending=True, str output_type="i64", Optional[str] name=None) |
| Return a node which performs NonMaxSuppression. More... | |
| Node | softplus (NodeInput data, Optional[str] name=None) |
| Apply SoftPlus operation on each element of input tensor. More... | |
| Node | mish (NodeInput data, Optional[str] name=None) |
| Return a node which performs Mish. More... | |
| Node | hswish (NodeInput data, Optional[str] name=None) |
| Return a node which performs HSwish (hard version of Swish). More... | |
| Node | swish (NodeInput data, Optional[NodeInput] beta=None, Optional[str] name=None) |
| Return a node which performing Swish activation function Swish(x, beta=1.0) = x * sigmoid(x * beta)). More... | |
| Node | acosh (NodeInput node, Optional[str] name=None) |
| Apply hyperbolic inverse cosine function on the input node element-wise. More... | |
| Node | asinh (NodeInput node, Optional[str] name=None) |
| Apply hyperbolic inverse sinus function on the input node element-wise. More... | |
| Node | atanh (NodeInput node, Optional[str] name=None) |
| Apply hyperbolic inverse tangent function on the input node element-wise. More... | |
| Node | proposal (Node class_probs, Node bbox_deltas, NodeInput image_shape, dict attrs, Optional[str] name=None) |
| Filter bounding boxes and outputs only those with the highest prediction confidence. More... | |
| Node | reduce_l1 (NodeInput node, NodeInput reduction_axes, bool keep_dims=False, Optional[str] name=None) |
| L1-reduction operation on input tensor, eliminating the specified reduction axes. More... | |
| Node | reduce_l2 (NodeInput node, NodeInput reduction_axes, bool keep_dims=False, Optional[str] name=None) |
| L2-reduction operation on input tensor, eliminating the specified reduction axes. More... | |
| Node | lstm_cell (NodeInput X, NodeInput initial_hidden_state, NodeInput initial_cell_state, NodeInput W, NodeInput R, NodeInput B, int hidden_size, List[str] activations=None, List[float] activations_alpha=None, List[float] activations_beta=None, float clip=0.0, Optional[str] name=None) |
| Return a node which performs LSTMCell operation. More... | |
| Node ngraph.opset4.ops.acosh | ( | NodeInput | node, |
| Optional[str] | name = None |
||
| ) |
Apply hyperbolic inverse cosine function on the input node element-wise.
@param node: One of: input node, array or scalar. @param name: Optional new name for output node. @return New node with arccosh operation applied on it.
| Node ngraph.opset4.ops.asinh | ( | NodeInput | node, |
| Optional[str] | name = None |
||
| ) |
Apply hyperbolic inverse sinus function on the input node element-wise.
@param node: One of: input node, array or scalar. @param name: Optional new name for output node. @return New node with arcsinh operation applied on it.
| Node ngraph.opset4.ops.atanh | ( | NodeInput | node, |
| Optional[str] | name = None |
||
| ) |
Apply hyperbolic inverse tangent function on the input node element-wise.
@param node: One of: input node, array or scalar. @param name: Optional new name for output node. @return New node with arctanh operation applied on it.
| Node ngraph.opset4.ops.ctc_loss | ( | NodeInput | logits, |
| NodeInput | logit_length, | ||
| NodeInput | labels, | ||
| NodeInput | label_length, | ||
| Optional[NodeInput] | blank_index = None, |
||
| bool | preprocess_collapse_repeated = False, |
||
| bool | ctc_merge_repeated = True, |
||
| bool | unique = False, |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs CTCLoss.
@param logits: 3-D tensor of logits. @param logit_length: 1-D tensor of lengths for each object from a batch. @param labels: 2-D tensor of labels for which likelihood is estimated using logits. @param label_length: 1-D tensor of length for each label sequence. @param blank_index: Scalar used to mark a blank index. @param preprocess_collapse_repeated: Flag for preprocessing labels before loss calculation. @param ctc_merge_repeated: Flag for merging repeated characters in a potential alignment. @param unique: Flag to find unique elements in a target. @return The new node which performs CTCLoss
| Node ngraph.opset4.ops.hswish | ( | NodeInput | data, |
| Optional[str] | name = None |
||
| ) |
Return a node which performs HSwish (hard version of Swish).
@param data: Tensor with input data floating point type. @return The new node which performs HSwish
| Node ngraph.opset4.ops.lstm_cell | ( | NodeInput | X, |
| NodeInput | initial_hidden_state, | ||
| NodeInput | initial_cell_state, | ||
| NodeInput | W, | ||
| NodeInput | R, | ||
| NodeInput | B, | ||
| int | hidden_size, | ||
| List[str] | activations = None, |
||
| List[float] | activations_alpha = None, |
||
| List[float] | activations_beta = None, |
||
| float | clip = 0.0, |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs LSTMCell operation.
@param X: The input tensor with shape: [batch_size, input_size]. @param initial_hidden_state: The hidden state tensor with shape: [batch_size, hidden_size]. @param initial_cell_state: The cell state tensor with shape: [batch_size, hidden_size]. @param W: The weight tensor with shape: [4*hidden_size, input_size]. @param R: The recurrence weight tensor with shape: [4*hidden_size, hidden_size]. @param B: The bias tensor for gates with shape: [4*hidden_size]. @param hidden_size: Specifies hidden state size. @param activations: The list of three activation functions for gates. @param activations_alpha: The list of alpha parameters for activation functions. @param activations_beta: The list of beta parameters for activation functions. @param clip: Specifies bound values [-C, C] for tensor clipping performed before activations. @param name: An optional name of the output node. @return The new node represents LSTMCell. Node outputs count: 2.
| Node ngraph.opset4.ops.mish | ( | NodeInput | data, |
| Optional[str] | name = None |
||
| ) |
Return a node which performs Mish.
@param data: Tensor with input data floating point type. @return The new node which performs Mish
| Node ngraph.opset4.ops.non_max_suppression | ( | NodeInput | boxes, |
| NodeInput | scores, | ||
| Optional[NodeInput] | max_output_boxes_per_class = None, |
||
| Optional[NodeInput] | iou_threshold = None, |
||
| Optional[NodeInput] | score_threshold = None, |
||
| str | box_encoding = "corner", |
||
| bool | sort_result_descending = True, |
||
| str | output_type = "i64", |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performs NonMaxSuppression.
@param boxes: Tensor with box coordinates.
@param scores: Tensor with box scores.
@param max_output_boxes_per_class: Tensor Specifying maximum number of boxes
to be selected per class.
@param iou_threshold: Tensor specifying intersection over union threshold
@param score_threshold: Tensor specifying minimum score to consider box for the processing.
@param box_encoding: Format of boxes data encoding.
@param sort_result_descending: Flag that specifies whenever it is necessary to sort selected
boxes across batches or not.
@param output_type: Output element type.
@return The new node which performs NonMaxSuppression
| Node ngraph.opset4.ops.proposal | ( | Node | class_probs, |
| Node | bbox_deltas, | ||
| NodeInput | image_shape, | ||
| dict | attrs, | ||
| Optional[str] | name = None |
||
| ) |
Filter bounding boxes and outputs only those with the highest prediction confidence.
@param class_probs: 4D input floating point tensor with class prediction scores.
@param bbox_deltas: 4D input floating point tensor with corrected predictions of bounding boxes
@param image_shape: The 1D input tensor with 3 or 4 elements describing image shape.
@param attrs: The dictionary containing key, value pairs for attributes.
@param name: Optional name for the output node.
* base_size The size of the anchor to which scale and ratio attributes are applied.
Range of values: a positive unsigned integer number
Default value: None
Required: yes
* pre_nms_topn The number of bounding boxes before the NMS operation.
Range of values: a positive unsigned integer number
Default value: None
Required: yes
* post_nms_topn The number of bounding boxes after the NMS operation.
Range of values: a positive unsigned integer number
Default value: None
Required: yes
* nms_thresh The minimum value of the proposal to be taken into consideration.
Range of values: a positive floating-point number
Default value: None
Required: yes
* feat_stride The step size to slide over boxes (in pixels).
Range of values: a positive unsigned integer
Default value: None
Required: yes
* min_size The minimum size of box to be taken into consideration.
Range of values: a positive unsigned integer number
Default value: None
Required: yes
* ratio The ratios for anchor generation.
Range of values: a list of floating-point numbers
Default value: None
Required: yes
* scale The scales for anchor generation.
Range of values: a list of floating-point numbers
Default value: None
Required: yes
* clip_before_nms The flag that specifies whether to perform clip bounding boxes before
non-maximum suppression or not.
Range of values: True or False
Default value: True
Required: no
* clip_after_nms The flag that specifies whether to perform clip bounding boxes after
non-maximum suppression or not.
Range of values: True or False
Default value: False
Required: no
* normalize The flag that specifies whether to perform normalization of output boxes to
[0,1] interval or not.
Range of values: True or False
Default value: False
Required: no
* box_size_scale Specifies the scale factor applied to logits of box sizes before decoding.
Range of values: a positive floating-point number
Default value: 1.0
Required: no
* box_coordinate_scale Specifies the scale factor applied to logits of box coordinates
before decoding.
Range of values: a positive floating-point number
Default value: 1.0
Required: no
* framework Specifies how the box coordinates are calculated.
Range of values: "" (empty string) - calculate box coordinates like in Caffe*
tensorflow - calculate box coordinates like in the TensorFlow*
Object Detection API models
Default value: "" (empty string)
Required: no
Example of attribute dictionary:
@code{.py}
# just required ones
attrs = {
'base_size': 85,
'pre_nms_topn': 10,
'post_nms_topn': 20,
'nms_thresh': 0.34,
'feat_stride': 16,
'min_size': 32,
'ratio': [0.1, 1.5, 2.0, 2.5],
'scale': [2, 3, 3, 4],
}
@endcode
Optional attributes which are absent from dictionary will be set with corresponding default.
@return Node representing Proposal operation.
| Node ngraph.opset4.ops.reduce_l1 | ( | NodeInput | node, |
| NodeInput | reduction_axes, | ||
| bool | keep_dims = False, |
||
| Optional[str] | name = None |
||
| ) |
L1-reduction operation on input tensor, eliminating the specified reduction axes.
@param node: The tensor we want to mean-reduce. @param reduction_axes: The axes to eliminate through mean operation. @param keep_dims: If set to True it holds axes that are used for reduction @param name: Optional name for output node. @return The new node performing mean-reduction operation.
| Node ngraph.opset4.ops.reduce_l2 | ( | NodeInput | node, |
| NodeInput | reduction_axes, | ||
| bool | keep_dims = False, |
||
| Optional[str] | name = None |
||
| ) |
L2-reduction operation on input tensor, eliminating the specified reduction axes.
@param node: The tensor we want to mean-reduce. @param reduction_axes: The axes to eliminate through mean operation. @param keep_dims: If set to True it holds axes that are used for reduction @param name: Optional name for output node. @return The new node performing mean-reduction operation.
| Node ngraph.opset4.ops.softplus | ( | NodeInput | data, |
| Optional[str] | name = None |
||
| ) |
Apply SoftPlus operation on each element of input tensor.
@param data: The tensor providing input data. @return The new node with SoftPlus operation applied on each element.
| Node ngraph.opset4.ops.swish | ( | NodeInput | data, |
| Optional[NodeInput] | beta = None, |
||
| Optional[str] | name = None |
||
| ) |
Return a node which performing Swish activation function Swish(x, beta=1.0) = x * sigmoid(x * beta)).
@param data: Tensor with input data floating point type. @return The new node which performs Swish