efficientdet-d1-tf¶
Use Case and High-Level Description¶
The efficientdet-d1-tf
model is one of the EfficientDet
models designed to perform object detection. This model was pre-trained in TensorFlow*.
All the EfficientDet models have been pre-trained on the Common Objects in Context (COCO) image database.
For details about this family of models, check out the Google AutoML repository.
Steps to Reproduce Conversion to Frozen Graph¶
Clone the original repository
git clone https://github.com/google/automl.git
cd automl
Checkout the commit that the conversion was tested on:
git checkout 341af7d4da7805c3a874877484e133f33c420ec5
Navigate to efficientdet source code directory
cd efficientdet
Install dependencies
pip install -r requirements.txt
Download model checkpoint archive using this link and unzip it.
Run following command:
python model_inspect.py --runmode=saved_model --model_name=efficientdet-d1 --ckpt_path=CHECKPOINT_DIR --saved_model_dir=OUTPUT_DIR
where
CHECKPOINT_DIR
- directory where model checkpoint stored,OUTPUT_DIR
- directory where converted model should be stored.
Specification¶
Metric |
Value |
---|---|
Type |
Object detection |
GFLOPs |
6.1 |
MParams |
6.6 |
Source framework |
TensorFlow* |
Accuracy¶
Metric |
Converted model |
---|---|
37.54% |
Input¶
Original Model¶
Image, name: image_arrays
, shape: 1, 640, 640, 3
, format is B, H, W, C
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is RGB
.
Converted Model¶
Image, name: image_arrays/placeholder_port_0
, shape: 1, 640, 640, 3
, format is B, H, W, C
, where:
B
- batch sizeH
- heightW
- widthC
- channel
Channel order is BGR
.
Output¶
Original Model¶
The array of summary detection information, name: detections
, shape: 1, 100, 7
in the format 1, N, 7
, where N
is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, y_min
, x_min
, y_max
, x_max
, confidence
, label
], where:
image_id
- ID of the image in the batch(
x_min
,y_min
) - coordinates of the top left bounding box corner(
x_max
,y_max
) - coordinates of the bottom right bounding box cornerconfidence
- confidence for the predicted classlabel
- predicted class ID, in range [1, 91] across following labels at<omz_dir>/data/dataset_classes/coco_91cl.txt
Converted Model¶
The array of summary detection information, name: detections
, shape: 1, 1, 100, 7
in the format 1, 1, N, 7
, where N
is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
], where:
image_id
- ID of the image in the batchlabel
- predicted class ID, in range [0, 90] across following labels at<omz_dir>/data/dataset_classes/coco_91cl.txt
conf
- confidence for the predicted class(
x_min
,y_min
) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1])(
x_max
,y_max
) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1])
Download a Model and Convert it into OpenVINO™ IR Format¶
You can download models and if necessary convert them into OpenVINO™ IR format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
omz_downloader --name <model_name>
An example of using the Model Converter:
omz_converter --name <model_name>
Demo usage¶
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:
Legal Information¶
The original model is distributed under the
Apache License, Version 2.0.
A copy of the license is provided in <omz_dir>/models/public/licenses/APACHE-2.0-TF-AutoML.txt
.