ssd_mobilenet_v1_coco¶
Use Case and High-Level Description¶
The ssd_mobilenet_v1_coco
model is a Single-Shot multibox Detection (SSD) network intended to perform object detection.
Specification¶
Metric |
Value |
---|---|
Type |
Detection |
GFLOPs |
2.494 |
MParams |
6.807 |
Source framework |
TensorFlow* |
Accuracy¶
Metric |
Value |
---|---|
coco_precision |
23.3212% |
Input¶
Original model¶
Image, name - image_tensor
, shape - 1, 300, 300, 3
, format - B, H, W, C
, where:
B
- batch sizeH
- image heightW
- image widthC
- number of channels
Expected color order - RGB
.
Converted model¶
Image, name - image_tensor
, shape - 1, 300, 300, 3
, format - B, H, W, C
, where:
B
- batch sizeH
- image heightW
- image widthC
- number of channels
Expected color order - BGR
.
Output¶
Original model¶
Classifier, name -
detection_classes
, contains predicted bounding boxes classes in range [1, 91]. The model was trained on Common Objects in Context (COCO) dataset version with 91 categories of object, 0 class is for background. Mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
file.Probability, name -
detection_scores
, contains probability of detected bounding boxes.Detection box, name -
detection_boxes
, contains detection boxes coordinates in format[y_min, x_min, y_max, x_max]
, where (x_min
,y_min
) are coordinates top left corner, (x_max
,y_max
) are coordinates right bottom corner. Coordinates are rescaled to input image size.Detections number, name -
num_detections
, contains the number of predicted detection boxes.
Converted model¶
The array of summary detection information, name - DetectionOutput
, shape - 1, 1, 100, 7
in the format 1, 1, N, 7
, where N
is the number of detected bounding boxes. For each detection, the description has the format: [image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
], where:
image_id
- ID of the image in the batchlabel
- predicted class ID in range [1, 91], mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
file.conf
- confidence for the predicted class(
x_min
,y_min
) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1])(
x_max
,y_max
) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1])
Download a Model and Convert it into OpenVINO™ IR Format¶
You can download models and if necessary convert them into OpenVINO™ IR format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
omz_downloader --name <model_name>
An example of using the Model Converter:
omz_converter --name <model_name>
Demo usage¶
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:
Legal Information¶
The original model is distributed under the Apache License, Version 2.0. A copy of the license is provided in <omz_dir>/models/public/licenses/APACHE-2.0-TF-Models.txt
.