class ngraph::pass::WrapInterpolateIntoTransposes

WrapInterpolateIntoTransposes transformation replaces Interpolate with Transpose -> Interpolate -> Transpose when 1) the source Interpolate has the static input rank; 2) ‘axes’ input is a Constant; 3) number of axes is equal to input rank minus 2; 4) axes contain 0 or 1. The reason of this transformation is that now CPU plugin supports interpolation only with respect to spatial dimensions, but TensorFlow frontend gives Interpolate with axes {1, 2} for 4D tensors.

#include <wrap_interpolate_into_transposes.hpp>

class WrapInterpolateIntoTransposes: public ov::pass::MatcherPass
    // methods

    OPENVINO_RTTI("WrapInterpolateIntoTransposes", "0");

Inherited Members

    // typedefs

    typedef DiscreteTypeInfo type_info_t;

    // methods

    bool get_property(const PassPropertyMask& prop_mask) const;
    void set_name(const std::string& name);
    std::string get_name() const;
    void set_callback(const param_callback& callback);
    virtual void set_pass_config(const std::shared_ptr<PassConfig>& pass_config);
    std::shared_ptr<PassConfig> get_pass_config();
    bool m_transformation_callback(const std::shared_ptr<const Node>& node);
    bool transformation_callback(const std::shared_ptr<const Node>& node);
    virtual const type_info_t& get_type_info() const = 0;
    MatcherPass& operator = (const MatcherPass&);
    bool apply(std::shared_ptr<ov::Node> node);

    template <typename T, class... Args>
    std::shared_ptr<T> register_new_node(Args&&... args);

    template <typename T>
    std::shared_ptr<T> register_new_node(const std::shared_ptr<T>& node);

    std::shared_ptr<ov::Node> register_new_node_(const std::shared_ptr<ov::Node>& node);
    const std::vector<std::shared_ptr<ov::Node>>& get_new_nodes();
    void clear_new_nodes();
    std::shared_ptr<pattern::Matcher> get_matcher();