Dynamic Shape with Binary Inputs#
Introduction#
This guide shows how to use the binary inputs feature to send data in binary format. This means you can load just a JPEG or PNG image and run inference on it without any data preprocessing.
To run inference on binary encoded data, make sure your model accepts the NHWC layout. When preparing the request, we need to let the Model Server know that the data is in binary format.
Learn more about the binary inputs feature.
Steps#
Download the Pretrained Model#
Download the model files and store them in the models
directory
mkdir -p models/resnet/1
curl https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/resnet50-binary-0001/FP32-INT1/resnet50-binary-0001.bin https://storage.openvinotoolkit.org/repositories/open_model_zoo/2022.1/models_bin/2/resnet50-binary-0001/FP32-INT1/resnet50-binary-0001.xml -o models/resnet/1/resnet50-binary-0001.bin -o models/resnet/1/resnet50-binary-0001.xml
Pull the Latest Model Server Image from Docker Hub#
Pull the latest version of OpenVINO™ Model Server from Docker Hub :
docker pull openvino/model_server:latest
Start the Container with Downloaded Model#
Start the container with the image pulled in the previous step and mount the models
directory :
docker run --rm -d -v $(pwd)/models:/models -p 9000:9000 openvino/model_server:latest --model_name resnet --model_path /models/resnet --layout NHWC:NCHW --port 9000
Download ovmsclient Package#
pip3 install ovmsclient
Download a Sample Image and Label Mappings#
wget https://raw.githubusercontent.com/openvinotoolkit/model_server/releases/2024/4/demos/common/static/images/zebra.jpeg
wget https://raw.githubusercontent.com/openvinotoolkit/model_server/releases/2024/4/demos/common/python/classes.py
Run Inference#
echo '
import numpy as np
from classes import imagenet_classes
from ovmsclient import make_grpc_client
client = make_grpc_client("localhost:9000")
with open("zebra.jpeg", "rb") as f:
img = f.read()
output = client.predict(inputs={ "0": img}, model_name= "resnet")
result_index = np.argmax(output[0])
print(imagenet_classes[result_index])' >> predict.py
python3 predict.py
zebra