Model Creation Python Sample¶
This sample demonstrates how to run inference using a model built on the fly that uses weights from the LeNet classification model, which is known to work well on digit classification tasks. You do not need an XML file, the model is created from the source code on the fly.
Options |
Values |
---|---|
Validated Models |
LeNet |
Model Format |
Model weights file (*.bin) |
Supported devices |
|
Other language realization |
The following OpenVINO Python API is used in the application:
Feature |
API |
Description |
---|---|---|
Model Operations |
openvino.runtime.Model , openvino.runtime.set_batch , openvino.runtime.Model.input |
Managing of model |
Opset operations |
openvino.runtime.op.Parameter , openvino.runtime.op.Constant , openvino.runtime.opset8.convolution , openvino.runtime.opset8.add , openvino.runtime.opset1.max_pool , openvino.runtime.opset8.reshape , openvino.runtime.opset8.matmul , openvino.runtime.opset8.relu , openvino.runtime.opset8.softmax |
Description of a model topology using OpenVINO Python API |
Basic OpenVINO™ Runtime API is covered by Hello Classification Python* Sample.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import logging as log
import sys
import typing
from functools import reduce
import numpy as np
import openvino as ov
from openvino.runtime import op, opset1, opset8
from data import digits
def create_model(model_path: str) -> ov.Model:
"""Create a model on the fly from the source code using openvino."""
def shape_and_length(shape: list) -> typing.Tuple[list, int]:
length = reduce(lambda x, y: x * y, shape)
return shape, length
weights = np.fromfile(model_path, dtype=np.float32)
weights_offset = 0
padding_begin = padding_end = [0, 0]
# input
input_shape = [64, 1, 28, 28]
param_node = op.Parameter(ov.Type.f32, ov.Shape(input_shape))
# convolution 1
conv_1_kernel_shape, conv_1_kernel_length = shape_and_length([20, 1, 5, 5])
conv_1_kernel = op.Constant(ov.Type.f32, ov.Shape(conv_1_kernel_shape), weights[0:conv_1_kernel_length].tolist())
weights_offset += conv_1_kernel_length
conv_1_node = opset8.convolution(param_node, conv_1_kernel, [1, 1], padding_begin, padding_end, [1, 1])
# add 1
add_1_kernel_shape, add_1_kernel_length = shape_and_length([1, 20, 1, 1])
add_1_kernel = op.Constant(ov.Type.f32, ov.Shape(add_1_kernel_shape),
weights[weights_offset : weights_offset + add_1_kernel_length])
weights_offset += add_1_kernel_length
add_1_node = opset8.add(conv_1_node, add_1_kernel)
# maxpool 1
maxpool_1_node = opset1.max_pool(add_1_node, [2, 2], padding_begin, padding_end, [2, 2], 'ceil')
# convolution 2
conv_2_kernel_shape, conv_2_kernel_length = shape_and_length([50, 20, 5, 5])
conv_2_kernel = op.Constant(ov.Type.f32, ov.Shape(conv_2_kernel_shape),
weights[weights_offset : weights_offset + conv_2_kernel_length],
)
weights_offset += conv_2_kernel_length
conv_2_node = opset8.convolution(maxpool_1_node, conv_2_kernel, [1, 1], padding_begin, padding_end, [1, 1])
# add 2
add_2_kernel_shape, add_2_kernel_length = shape_and_length([1, 50, 1, 1])
add_2_kernel = op.Constant(ov.Type.f32, ov.Shape(add_2_kernel_shape),
weights[weights_offset : weights_offset + add_2_kernel_length],
)
weights_offset += add_2_kernel_length
add_2_node = opset8.add(conv_2_node, add_2_kernel)
# maxpool 2
maxpool_2_node = opset1.max_pool(add_2_node, [2, 2], padding_begin, padding_end, [2, 2], 'ceil')
# reshape 1
reshape_1_dims, reshape_1_length = shape_and_length([2])
# workaround to get int64 weights from float32 ndarray w/o unnecessary copying
dtype_weights = np.frombuffer(
weights[weights_offset : weights_offset + 2 * reshape_1_length],
dtype=np.int64,
)
reshape_1_kernel = op.Constant(ov.Type.i64, ov.Shape(list(dtype_weights.shape)), dtype_weights)
weights_offset += 2 * reshape_1_length
reshape_1_node = opset8.reshape(maxpool_2_node, reshape_1_kernel, True)
# matmul 1
matmul_1_kernel_shape, matmul_1_kernel_length = shape_and_length([500, 800])
matmul_1_kernel = op.Constant(ov.Type.f32, ov.Shape(matmul_1_kernel_shape),
weights[weights_offset : weights_offset + matmul_1_kernel_length],
)
weights_offset += matmul_1_kernel_length
matmul_1_node = opset8.matmul(reshape_1_node, matmul_1_kernel, False, True)
# add 3
add_3_kernel_shape, add_3_kernel_length = shape_and_length([1, 500])
add_3_kernel = op.Constant(ov.Type.f32, ov.Shape(add_3_kernel_shape),
weights[weights_offset : weights_offset + add_3_kernel_length],
)
weights_offset += add_3_kernel_length
add_3_node = opset8.add(matmul_1_node, add_3_kernel)
# ReLU
relu_node = opset8.relu(add_3_node)
# reshape 2
reshape_2_kernel = op.Constant(ov.Type.i64, ov.Shape(list(dtype_weights.shape)), dtype_weights)
reshape_2_node = opset8.reshape(relu_node, reshape_2_kernel, True)
# matmul 2
matmul_2_kernel_shape, matmul_2_kernel_length = shape_and_length([10, 500])
matmul_2_kernel = op.Constant(ov.Type.f32, ov.Shape(matmul_2_kernel_shape),
weights[weights_offset : weights_offset + matmul_2_kernel_length],
)
weights_offset += matmul_2_kernel_length
matmul_2_node = opset8.matmul(reshape_2_node, matmul_2_kernel, False, True)
# add 4
add_4_kernel_shape, add_4_kernel_length = shape_and_length([1, 10])
add_4_kernel = op.Constant(ov.Type.f32, ov.Shape(add_4_kernel_shape),
weights[weights_offset : weights_offset + add_4_kernel_length],
)
weights_offset += add_4_kernel_length
add_4_node = opset8.add(matmul_2_node, add_4_kernel)
# softmax
softmax_axis = 1
softmax_node = opset8.softmax(add_4_node, softmax_axis)
return ov.Model(softmax_node, [param_node], 'lenet')
def main():
log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.INFO, stream=sys.stdout)
# Parsing and validation of input arguments
if len(sys.argv) != 3:
log.info(f'Usage: {sys.argv[0]} <path_to_model> <device_name>')
return 1
model_path = sys.argv[1]
device_name = sys.argv[2]
labels = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
number_top = 1
# ---------------------------Step 1. Initialize OpenVINO Runtime Core--------------------------------------------------
log.info('Creating OpenVINO Runtime Core')
# ---------------------------Step 2. Read a model in OpenVINO Intermediate Representation------------------------------
log.info(f'Loading the model using openvino with weights from {model_path}')
model = create_model(model_path)
# ---------------------------Step 3. Apply preprocessing----------------------------------------------------------
# Get names of input and output blobs
ppp = ov.preprocess.PrePostProcessor(model)
# 1) Set input tensor information:
# - input() provides information about a single model input
# - precision of tensor is supposed to be 'u8'
# - layout of data is 'NHWC'
ppp.input().tensor() \
.set_element_type(ov.Type.u8) \
.set_layout(ov.Layout('NHWC')) # noqa: N400
# 2) Here we suppose model has 'NCHW' layout for input
ppp.input().model().set_layout(ov.Layout('NCHW'))
# 3) Set output tensor information:
# - precision of tensor is supposed to be 'f32'
ppp.output().tensor().set_element_type(ov.Type.f32)
# 4) Apply preprocessing modifing the original 'model'
model = ppp.build()
# Set a batch size equal to number of input images
ov.set_batch(model, digits.shape[0])
# ---------------------------Step 4. Loading model to the device-------------------------------------------------------
log.info('Loading the model to the plugin')
core = ov.Core()
compiled_model = core.compile_model(model, device_name)
# ---------------------------Step 5. Prepare input---------------------------------------------------------------------
n, c, h, w = model.input().shape
input_data = np.ndarray(shape=(n, c, h, w))
for i in range(n):
image = digits[i].reshape(28, 28)
image = image[:, :, np.newaxis]
input_data[i] = image
# ---------------------------Step 6. Do inference----------------------------------------------------------------------
log.info('Starting inference in synchronous mode')
results = compiled_model.infer_new_request({0: input_data})
# ---------------------------Step 7. Process output--------------------------------------------------------------------
predictions = next(iter(results.values()))
log.info(f'Top {number_top} results: ')
for i in range(n):
probs = predictions[i]
# Get an array of number_top class IDs in descending order of probability
top_n_idexes = np.argsort(probs)[-number_top :][::-1]
header = 'classid probability'
header = header + ' label' if labels else header
log.info(f'Image {i}')
log.info('')
log.info(header)
log.info('-' * len(header))
for class_id in top_n_idexes:
probability_indent = ' ' * (len('classid') - len(str(class_id)) + 1)
label_indent = ' ' * (len('probability') - 8) if labels else ''
label = labels[class_id] if labels else ''
log.info(f'{class_id}{probability_indent}{probs[class_id]:.7f}{label_indent}{label}')
log.info('')
# ----------------------------------------------------------------------------------------------------------------------
log.info('This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n')
return 0
if __name__ == '__main__':
sys.exit(main())
How It Works¶
At startup, the sample application does the following:
Reads command line parameters
Build a Model and passed weights file
Loads the model and input data to the OpenVINO™ Runtime plugin
Performs synchronous inference and processes output data, logging each step in a standard output stream
You can see the explicit description of each sample step at Integration Steps section of “Integrate OpenVINO™ Runtime with Your Application” guide.
Running¶
To run the sample, you need to specify model weights and device.
python model_creation_sample.py <path_to_model> <device_name>
Note
This sample supports models with FP32 weights only.
The
lenet.bin
weights file was generated by model conversion API from the public LeNet model with theinput_shape [64,1,28,28]
parameter specified.The original model is available in the Caffe* repository on GitHub*.
For example:
python model_creation_sample.py lenet.bin GPU
Sample Output¶
The sample application logs each step in a standard output stream and outputs 10 inference results.
[ INFO ] Creating OpenVINO Runtime Core
[ INFO ] Loading the model using ngraph function with weights from lenet.bin
[ INFO ] Loading the model to the plugin
[ INFO ] Starting inference in synchronous mode
[ INFO ] Top 1 results:
[ INFO ] Image 0
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 0 1.0000000 0
[ INFO ]
[ INFO ] Image 1
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 1 1.0000000 1
[ INFO ]
[ INFO ] Image 2
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 2 1.0000000 2
[ INFO ]
[ INFO ] Image 3
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 3 1.0000000 3
[ INFO ]
[ INFO ] Image 4
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 4 1.0000000 4
[ INFO ]
[ INFO ] Image 5
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 5 1.0000000 5
[ INFO ]
[ INFO ] Image 6
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 6 1.0000000 6
[ INFO ]
[ INFO ] Image 7
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 7 1.0000000 7
[ INFO ]
[ INFO ] Image 8
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 8 1.0000000 8
[ INFO ]
[ INFO ] Image 9
[ INFO ]
[ INFO ] classid probability label
[ INFO ] -------------------------
[ INFO ] 9 1.0000000 9
[ INFO ]
[ INFO ] This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool