class ov::op::v0::CumSum¶
Overview¶
Tensor cumulative sum operation. More…
#include <cum_sum.hpp>
class CumSum: public ov::op::Op
{
public:
// construction
CumSum();
CumSum(
const Output<Node>& arg,
const Output<Node>& axis,
const bool exclusive = false,
const bool reverse = false
);
CumSum(
const Output<Node>& arg,
const bool exclusive = false,
const bool reverse = false
);
// methods
OPENVINO_OP("CumSum", "opset3");
virtual std::shared_ptr<Node> clone_with_new_inputs(const OutputVector& new_args) const;
bool evaluate(TensorVector& outputs, const TensorVector& inputs) const;
virtual bool has_evaluate() const;
virtual bool visit_attributes(AttributeVisitor& visitor);
virtual void validate_and_infer_types();
bool is_exclusive() const;
bool is_reverse() const;
};
Inherited Members¶
public:
// typedefs
typedef DiscreteTypeInfo type_info_t;
typedef std::map<std::string, Any> RTMap;
// methods
virtual void validate_and_infer_types();
void constructor_validate_and_infer_types();
virtual bool visit_attributes(AttributeVisitor&);
virtual const ov::op::AutoBroadcastSpec& get_autob() const;
virtual bool has_evaluate() const;
virtual bool evaluate(
const ov::HostTensorVector& output_values,
const ov::HostTensorVector& input_values
) const;
virtual bool evaluate(
const ov::HostTensorVector& output_values,
const ov::HostTensorVector& input_values,
const EvaluationContext& evaluationContext
) const;
virtual bool evaluate(
ov::TensorVector& output_values,
const ov::TensorVector& input_values
) const;
virtual bool evaluate(
ov::TensorVector& output_values,
const ov::TensorVector& input_values,
const ov::EvaluationContext& evaluationContext
) const;
virtual bool evaluate_lower(ov::TensorVector& output_values) const;
virtual bool evaluate_upper(ov::TensorVector& output_values) const;
virtual bool evaluate_label(TensorLabelVector& output_labels) const;
virtual bool constant_fold(
OutputVector& output_values,
const OutputVector& inputs_values
);
virtual OutputVector decompose_op() const;
virtual const type_info_t& get_type_info() const = 0;
const char \* get_type_name() const;
void set_arguments(const NodeVector& arguments);
void set_arguments(const OutputVector& arguments);
void set_argument(size_t position, const Output<Node>& argument);
void set_output_type(
size_t i,
const element::Type& element_type,
const PartialShape& pshape
);
void set_output_size(size_t output_size);
void invalidate_values();
virtual void revalidate_and_infer_types();
virtual std::string description() const;
const std::string& get_name() const;
void set_friendly_name(const std::string& name);
const std::string& get_friendly_name() const;
virtual bool is_dynamic() const;
size_t get_instance_id() const;
virtual std::ostream& write_description(std::ostream& os, uint32_t depth = 0) const;
const std::vector<std::shared_ptr<Node>>& get_control_dependencies() const;
const std::vector<Node \*>& get_control_dependents() const;
void add_control_dependency(std::shared_ptr<Node> node);
void remove_control_dependency(std::shared_ptr<Node> node);
void clear_control_dependencies();
void clear_control_dependents();
void add_node_control_dependencies(const std::shared_ptr<const Node>& source_node);
void add_node_control_dependents(const std::shared_ptr<const Node>& source_node);
void transfer_control_dependents(std::shared_ptr<Node> replacement);
size_t get_output_size() const;
const element::Type& get_output_element_type(size_t i) const;
const element::Type& get_element_type() const;
const Shape& get_output_shape(size_t i) const;
const PartialShape& get_output_partial_shape(size_t i) const;
Output<const Node> get_default_output() const;
Output<Node> get_default_output();
virtual size_t get_default_output_index() const;
size_t no_default_index() const;
const Shape& get_shape() const;
descriptor::Tensor& get_output_tensor(size_t i) const;
descriptor::Tensor& get_input_tensor(size_t i) const;
std::set<Input<Node>> get_output_target_inputs(size_t i) const;
size_t get_input_size() const;
const element::Type& get_input_element_type(size_t i) const;
const Shape& get_input_shape(size_t i) const;
const PartialShape& get_input_partial_shape(size_t i) const;
Node \* get_input_node_ptr(size_t index) const;
std::shared_ptr<Node> get_input_node_shared_ptr(size_t index) const;
Output<Node> get_input_source_output(size_t i) const;
virtual std::shared_ptr<Node> clone_with_new_inputs(const OutputVector& inputs) const = 0;
std::shared_ptr<Node> copy_with_new_inputs(const OutputVector& new_args) const;
std::shared_ptr<Node> copy_with_new_inputs(
const OutputVector& inputs,
const std::vector<std::shared_ptr<Node>>& control_dependencies
) const;
bool has_same_type(std::shared_ptr<const Node> node) const;
RTMap& get_rt_info();
const RTMap& get_rt_info() const;
NodeVector get_users(bool check_is_used = false) const;
bool operator < (const Node& other) const;
std::vector<Input<Node>> inputs();
std::vector<Input<const Node>> inputs() const;
std::vector<Output<Node>> input_values() const;
std::vector<Output<Node>> outputs();
std::vector<Output<const Node>> outputs() const;
Input<Node> input(size_t input_index);
Input<const Node> input(size_t input_index) const;
Output<Node> input_value(size_t input_index) const;
Output<Node> output(size_t output_index);
Output<const Node> output(size_t output_index) const;
virtual bool match_value(
ov::pass::pattern::Matcher \* matcher,
const Output<Node>& pattern_value,
const Output<Node>& graph_value
);
virtual bool match_node(
ov::pass::pattern::Matcher \* matcher,
const Output<Node>& graph_value
);
static _OPENVINO_HIDDEN_METHODconst ::ov::Node::type_info_t& get_type_info_static();
virtual const ::ov::Node::type_info_t& get_type_info() const;
Detailed Documentation¶
Tensor cumulative sum operation.
Compute the cumulative sum of the input tensor along the axis specified.
Construction¶
CumSum()
Constructs a cumulative summation operation.
Constructs a cumulative summation operation.
Parameters:
arg |
The tensor to be summed. |
axis |
zero dimension tensor specifying axis position along which cumulative sum must be performed |
exclusive |
if set to true, the top element is not included |
reverse |
if set to true, will perform the sums in reverse direction |
Constructs a cumulative summation operation with axis = 0.
Parameters:
arg |
The tensor to be summed |
Methods¶
virtual bool has_evaluate() const
Allows to get information about availability of evaluate method for the current operation.
virtual void validate_and_infer_types()
Verifies that attributes and inputs are consistent and computes output shapes and element types. Must be implemented by concrete child classes so that it can be run any number of times.
Throws if the node is invalid.